Desulfurization Fuel Filter

Ron Rohrbach Honeywell

August 24, 2006

Honeywell

Honeywell

- D. Bause, dan.bause@honeywell.com, (973) 455-6949
- G. Bilski, gary.bilski@honeywell.com, (419) 661-6701
- C. Boesel, chris.boesel@honeywell.com, (419) 661-6866
- W. Gerwin, weston.gerwin@honeywell.com, (419) 661-6758
- R. Rohrbach, ron.rohrbach@honeywell.com, (973) 455-2985 (Presenter)
- S. Tabb, scot.tabb@honeywell.com, (419)-661-6745
- P. Unger, peter.unger@honeywell.com, (973) 455-3535
- G. Zulauf, gary.zulauf@honeywell.com, (419) 661-6707

Johnson Matthey

H. Hess, hessh@jmusa.com, (610) 254-5017

Volvo Powertrain (Mack Trucks Inc.)

- K. Murphy, <u>ken.murphy@volvo.com</u>, (301)-790-5594
- R. Moores, <u>roxanna.moores@volvo.com</u>, (301)-790-5859

Dept of Energy

- R. Nine, ralph.nine@netl.doe.gov, (304) 285-2017
- S. Goguen, stephen.goguen@hq.doe.gov, (202) 586-8044

Program

Goal: To develop and demonstrate proof-of-concept for an "on-vehicle" desulfurization fuel filter for diesel engines.

Project Team

- Honeywell Consumer Products Group FRAM
- Marathon Ashland LLC
- Volvo Powertrain (Mack Trucks Inc.)
- Johnson Matthey
- American Waste Industries

Dept of Energy Contract DOE Contract DE-FC26-02NT41219

Program began April 2002

Fuel Sulfur Removal Filter

In-Going Rationale

- NOx adsorber technology sensitive to sulfur levels in the fuel
- Reduction in the number of desulfation events for NOx adsorbers can improve their life
- Refineries will face a challenge to achieve economical hydro-desulfurization to achieve levels low enough to not poison NOx adsorbers, 3 ppm or lower.
- Reduced fuel sulfur levels make point-of-use sulfur treatment feasible
 - volume required for an "on-board" sulfur trap is within reason
- Pipeline contamination will likely raise sulfur levels

Approach

- Develop fuel filter type device as an adsorption bed for sulfur removal.
- Integrate sulfur filter maintenance interval to other scheduled maintenance events

Sulfur Species

Alkylated Alkylated Alkylated Mercaptans **Thiols** H_2S Benzothiophene Thiophene Dibenzothiophene BP 4,6-dimethyldibenzothiophene **DMDBT**

The DMDBT looks similar to and behaves like some major components in diesel fuel

Diesel Composition

- 20% 1 ring aromatics
- 3% 2 ring aromatics (30,000ppm) very similar to DMDBT
- DMDBT is at 10 ppm

3000 to 1 ratio

 Low level polar contaminants in fuel-lubricants, oxidative degradation products and antioxidants

Approaches

- Remove the sulfur contaminant directly (requires high selectivity)
- Convert it into something more easily removed
 - Create a "chemical hook"

Program Chronology

- Comprehensive screening of approaches to remove sulfur
- Studied over 4000 candidate chemistries
 - Universities
 - -Inventors
 - Companies
 - Papers, patents
 - Combinatorial study (UOP)
- A single candidate system identified as "go forward" approach

Sorbent Sulfur Uptake

GC Trace of sulfur species removed by sorbent

Removes uniformly broad class of sulfur species also potential contamination from higher sulfur fuels

Filter Properties

- 10 gallon column
- 60 C operation
- •14-40 mesh
- Non-compressible inorganic oxide

NAC

 8.14 L each, undersized to expedite durability test

NO_x Adsorber Catalysts (NAC)

• Why NOx adsorbers?

- HC reductant preferred (vs. on-board urea for SCR)
- Good operating window

Challenges to meet with NO_x adsorbers...

- Regeneration steps / fuel penalty
- Rich operation (in-cylinder OR exhaust fuel injection)
- Impact of engine operation on PM formation rates
- System cost and size
- Satisfying High Temperature "NTE Zones"
- Desulfation of NAC

Systems Impacted by Sulfur

NAC Operation

 Storage and reduction cycles are achieved by switching the exhaust between lean and rich

- For current NAC operation, periodic sulfur removal is required, via desulfation cycles (DeSOx):
 - Sulfur is driven off of catalyst by increasing temperature in exhaust
 - Thermal damage to catalysts can result from high temperature exposure
 - Significant fuel economy penalty can occur as a result of DeSOx cycles
- Fuel sulfur filter will allow interval between DeSOx events to be extended:
 - Less thermal damage due to less high temperature exposure
 - Higher NOx storage trapping efficiency maintained between DeSOx events
 - Improved fuel economy, compared to operation without fuel sulfur filter

HDD Test Cell Setup:

- 2002 Mack AC-427 12L Engine with cooled EGR.
- Dual leg exhaust setup, with valve switching and multiple injection upstream of DOC
- Steady-state operation at 1800 rpm, 300 ft-lbs
- Periodic soot regeneration when delta P exceeds 75 in-H₂O, (2.7 psi)
- Total system performance determined by NOx sensors before and after catalysts

After-treatment Setup & Sulfur Filter

Tandem aftertreatment system DOC, CSF and NAC

Sulfur Filter-temperature controlled, fixed bed-single pass operation.

Plumbed between fuel storage tank and engine

Relative NOx Capacity 558 Hrs

- Baseline: decay beginning at 150 hr, precipitous loss > 200 hr, 255 hr (2.53 g/l sulfur exposure)
 Sulfur exposures Baseline- 41.2 g at 255 Hr With Sulfur Filter- ~40 g at 522 Hr
- Filter Run: in progress, longer NOx conversion, after 380 hr beginning to see gradual decline,
- Post Mortem: sulfur levels on NACs to be analyzed

TEST CELL ULSD FUEL SAMPLES

ENGINE TEST- SULFUR ELUTION PROFILE

Honeywell

Target to meet 3 ppm target by 500 hrs or ~500 by

FUEL PROPERTIES- CETANE No.

FUEL PROPERTIES- LUBRICITY

FILTER SIZE ESTIMATE

Light / Medium Duty Diesel

	OIL CHANGE INTERVAL			
MPG	5,000	7,500	10,000	
15	0.67	1	1.34	
20	0.5	0.75	1.0	
25	0.40	0.60	0.80	

Estimated filter size in gallons for light/intermediate duty diesel engines. Values based on current projected performance at Mack Trucks.

Next Steps

Reduce size of sorbent bed

- Non-optimized sorbent
- Combinatorial optimization program begun UOP, expected completion Nov 2006
- Deal with lubricity loss issue
 - Readditize lubricity additive within filter
- Light duty diesel test